TWAS-Fayzah M. Al-Kharafi Award winner, Nadia Haider, characterizes economically useful plants through their DNA, to help protect them from human and environmental stressors.
Deforestation, livestock grazing, and urban development are major threats to native plant life in Syria. On top of that, other hazards like water pollution and climate change-driven drought deeply constrain future agricultural and economic development.
For her outstanding research in response to these challenges, Syrian biotechnologist Nadia Haider won the 2022 TWAS-Fayzah M. Al-Kharafi Award. She shared the prize with Damalie Nakanjako, a professor of medicine and principal of the College of Health Sciences, at Makerere University in Kampala, Uganda.
Crops tolerant to stress
Haider is a research director with the Department of Molecular Biology and Biotechnology of the Atomic Energy Commission of Syria (AECS) in Damascus, Syria. She identifies genetic variations in crops and wild plants for facilitating, accelerating and optimising conservation and crop improvement programmes that produce species tolerant to various stressors, including high salt content in the water they need to thrive.
“Syria is the home to many plants that have been domesticated, becoming important agricultural crops such as wheat, barley, lentils, chickpeas, chervil, peas and flax, and offers a number of fruit trees such as dates, almond and figs, but also medicinal and aromatic plants,” said Haider.
“Wild species, in particular, represent a large pool of genetic diversity from which to draw new genetic variations required in laboratory breeding programmes, for the betterment of cultivated commercial varieties.”
TWAS-Fayzah M. Al-Kharafi Award
The TWAS-Fayzah M. Al-Kharafi Award is an annual award named after TWAS Fellow Fayzah M. Al-Kharafi, which acknowledges preeminent women scientists from scientifically and technologically lagging countries.
[…]
Barcoding plants
Haider earned her PhD in plant biotechnology in 2003, at the University of Reading’s School of Plant Sciences (now School of Biological Sciences), in the United Kingdom. Since then, she has focused her scientific interest on the analysis of plant DNA for various applications. In 2015, the world database Scopus named her as one of the “Top hundred Syrian researchers around the world.”
She has deeply investigated the DNA barcoding of plants, a method for the identification of vegetal species through molecular comparison of specific DNA regions. DNA barcoding refers to the use of a standardized short sequence of DNA that allows “to make species identifications in a rapid, accurate, and cost-effective manner,” Haider clarified. “It represents the most reliable approach available to analyze specimens and specimen-based data for systematic research.”
Unique identifyer
The term barcoding comes from supermarket scanners used to uniquely identify products using a code printed on the container. Similarly, scientists use a unique, identifying sequence taken from an organism’s gene and compare it to similar sequences in samples of other species, thus identifying where they match, and where they differ.
“I started working on the barcoding of plants many years ago, during my PhD research, in 2000–2003,” Haider recalled. “I designed many universal primers (short DNA sequences) for plants that target specific regions of the DNA. Then I used DNA barcoding for the identification of plant species such as those of legumes, roses, and orchids, and for the detection of bio-adulterants in food products such as spices, meat, tea and coffee.”
Hunting for frauds
In order to maximize profits, fraudulent producers may add to foods or herbal medicines some adulterants, i.e. substances that increase the weight or simulate a better-quality product. But such additions lower the overall quality and affect the nutritional properties of the commodity, often making it unsafe.
In particular, bio-adulterants are produced by and obtained from living organisms and contain DNA different from that present in pure products. This, explained Haider, allows easy spotting of adulterations: researchers can identify foreign DNA in any sample by using Polymerase Chain Reaction (PCR), a laboratory technique that rapidly produces (amplifies) millions to billions of copies of a specific region of DNA. “Using PCR, we may carry out both qualitative and quantitative analysis, hence detect bio-adulterations.”
Haider has applied this technique to find bio-adulterants in meat, spices, pistachio, tea, and Damask rose (Rosa damascena), all relevant to the Syrian economy. She has also characterized from a molecular point of view wheat and legumes, comparing wild species and cultivated varieties, the Syrian pear (Pyrus syriaca) as well as wild orchid, putting special emphasis on coffee analysis.
Coffee authentication
Coffee, in fact, is a common target of adulteration: a common practice involves the substitution of the more expensive Arabica variety with the less prestigious Robusta. Using DNA-based methodologies that she personally adapted to this beverage, Haider and her collaborators succeeded in coffee authentication, even from the brewed drink, effectively detecting differences in mixtures of Arabica and Robusta with as low as 1 per cent in adulterant DNA content.
“This novel approach will be able to advance coffee authentication methods for safeguarding coffee producers and consumers,” Haider noted.
Cristina Serra
Reading full article from TWAS website.